
Acta metall, mater. Vol. 39, No. 7, pp. 1405-1416, 1991 0956o7151/91 $3.00 + 0.00 
Printed in Great Britain. All rights reserved Copyright © 1991 Pergamon Press plc 

DISLOCATION EMISSION AT FIBERS--I.  
THEORY OF LONGITUDINAL PUNCHING 

BY THERMAL STRESSES 

D. C. D U N A N D  and A. M O R T E N S E N  

Department of Materials Science and Engineering, Massachusetts Institute of Technology, 
Cambridge, MA 02139, U.S.A. 

(Received 20 September 1990; in revised form 28 January 1991) 

Abatraet--A model predicting the number of prismatic loops dislocation punched at the ends of a 
cylindrical fiber by thermal mismatch stresses is presented. The longitudinal stress in the fiber is derived 
as a function of the distance from fiber center using the shear-lag model for the elastic portion of the 
interface. We show that there is a critical fiber length above which the number of loops is constant. This 
is because the central part of the fiber is strained by plastic and elastic interfacial shear until it exhibits 
no mismatch with the matrix. The backstress of the loops on the fiber is derived and the effect of the fiber 
stress field on the loops is estimated away from the corner singularity. The analysis allows prediction of 
both the punching distance and the dislocation density in the row of loops. Finally, a parametric study 
is performed on the system A1/A1203 and the results are compared to an existing and different model. 

Rl~um6--On prtsente un module pr~voyant le nombre de boucles prismatiques de dislocations produites 
aux extr~mitts d'une fibre cylindrique par les contraintes de d~saccord thermique. La contrainte 
longitudinale dans la fibre est calculte en fonction de la distance du centre de la fibre en utilisant le module 
de retard au cisaillement pour la portion 61astique de l'interface. Nous montrons qu'il existe mae longueur 
critique de fibre au dessus de laquelle le nombre de boucles est constant. Ceci est 1i6 au fait que la partie 
centrale de la fibre est d~formte par un cisaillement interfacial plastique et ~lastique jusqu'~i ce qu'elle ne 
pr~sente aucun d~saccord avec la matrice. Les contraintes en retour des boucles sur la fibre sont calcultes 
et l'effet du champ de contrainte de la fibre sur les boucles est estim~ loin de la singularit6 de coin. L'analyse 
permet de pr~voir ~ la fois la distance d'interaction et la densit~ de dislocations dans la rang~e de boucles. 
Enfin, une ~tude param~trique est effectu~e sur le syst~me AI/AI203 et les rtsultats sont comparts fi un 
module different. 

Zusammenfassung--Es wird ein Modell vorgelegt, welches das Aussto~n prismatischer Versetzungs- 
schleifen an den Enden zylindrischer Fasern durch thermische Fehlpassungsspannungen beschreibt. Die 
longitudinale Spannung in den Fasern wird in Abh/ingigkeit vom Abstand vonder Fasermitte abgeleitet, 
idem ein Scherverztgerungsmodell fiir den elastischen Teil der Grenzfl/iche benutzt wird. Wir zeigen, dab 
eine kristische Faserl~inge besteht, oberhalb der die Zahl der Versetzungsschleifen konstant ist. Diese 
Tatsache riihrt daher, dab der zentrale Teil der Faser durch plastische mad elastische Grenzfl/ichenscherung 
verformt wird, bis keine Fehlpassung zur Matrix mehr besteht. Die Riickspannung der Versetzungsschleifen 
auf die Faser wird abgeleitet; der EinfluB des Spannungsfeldes der Faser auf die Versetzungsschleifen wird 
fiir Bereiche auBerhalb der EckSingularit/it abgesch/itzt. Die Analyse ermtglicht, sowohl AusstoBabstand 
wie auch die Versetzungsdichte in  der Reihe der Versetzungsschleifen vgra_usz~usagen. SchlieBlich wird 
das System A1/A1203 parametrisch studiert; die Ergebnisse werden mit einem vorhandenen, aber sich 
unterscheidendem Modell verglichen. 

1. INTRODUCTION 

When a two-phase material is subjected to a 
temperature change, internal stresses are generated 
if the two constituents have different Coefficients 
of  Thermal Expansion (CTEs). If  one of  the 
phases (usually the matrix) deforms by slip, plastic 
relaxation can occur, thus retarding or  suppressing 
fracture of  the matrix, reinforcement or  interface. 
Prismatic loop punching due to thermal stresses 
has been observed in metals with submicroscopic 
particles of  spherical [1] and irregular [2, 3] shape, 
salts containing large spheres [4, 5], particles [6] 
or  fibers [5, 7], as well as metal matrix composites 
reinforced with large particles [8] and whiskers 
[9, 10]. 

A theoretical understanding of  thermally induced 
plasticity in metal matrix composites is important  
since dislocations produced during thermal cycling or 
cooling from manufacturing temperature can influ- 
ence such properties as yield stress, strain-hardening, 
residual stresses, creep and dimensional stability of  
the composite. While many models exist which con- 
sider the elastic stresses around fibers, only one---to 
the best of  our knowledge---proposed by Taya and 
Mori  [10] and later used by Christman and Suresh 
[11], describes loop punching at the end of  the fibers. 
This model, briefly summarized in Appendix B, 
approximates fibers with spheroids and uses Es- 
helby's equivalent inclusion model  [12] assuming a 
continuous distribution of  dislocations to predict the 
punching distance by the spheroids. 
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The model presented in this article is an attempt 
to treat the problem of thermally induced prismatic 
loops punched longitudinally by cylindrical fibers, 
using the shear-lag approximation by Cox [13] 
and dislocation theory. We first derive the number 
of loops in the elasto-plastic case and give expres- 
sions for the fiber stress, the interfacial shear stress 
and the backstress due to the punched dislocations. 
We then determine the punching distance using exist- 
ing expressions for the equilibrium of a row of 
loops and by estimating the effect on the loops of the 
fiber residual stresses. We finally perform a para- 
metric study on the system AI/AI203 to illustrate 
the model described above and compare it to that of 
Ref. [10]. 

2. THEORY 

Consider a perfectly elastic fiber in a matrix 
capable of plastic deformation by dislocation move- 
ment. Upon cooling from an elevated temperature, 
thermal stresses will develop due to the CTE mis- 
match between the fiber and the matrix. We neglect 
the radial stresses, which are small compared to 
the axial stresses for a slender body, and we assume 
an elastic, perfectly plastic matrix showing no strain- 
hardening. At high temperature, the fiber is em- 
bedded in the matrix and both phases are initially 
stress-free. Upon cooling, the matrix shrinks more 
than the fiber if we assume that the matrix CTE is 
larger than that of the fiber (as is the case in most 
metal matrix composite systems). This results in a 
stressed interface with the fiber in compression and 
the matrix in tension. At first, the interface is stressed 
elastically by shear along the whole length of the 
fiber. As the temperature decreases, the total mis- 
match strain between fiber and matrix increases and 
the interfacial shear stress increases proportionally. 
At some temperature, function of the fiber length, the 
interfacial shear stress may equal the matrix plastic 
flow stress, at which point dislocation motion is 
induced in the matrix. This changes the nature of 
the stress distribution along the fiber, just as it does 
in a short fiber composite in tension [14]. Whatever 
the nature of the stress at the interface, so long as 
there is no debonding (a situation which we exclude 
here), stress builds up in the fiber as the result of load 
transfer from the matrix. The resulting fiber strain 
reduces the local mismatch between fiber and matrix. 

In summary, three different local situations are 
possible at the fiber-matrix interface, which may 
occur simultaneously or separately along the same 
fiber: 

--unstrained interface: the fiber is stressed 
elastically to a strain equal to the CTE mis- 
match strain; 
----elastic interface: both fiber and matrix are 
stressed elastically; the interfacial shear stress is 
everywhere lower than the critical shear stress 
at which slip is initiated; 

--plast ic  interface: the critical shear stress is 
reached, thus inducing slip at the interface. 

2.1. Elastic regime 

Consider a cylindrical fiber of length L, diameter d, 
parallel to the x-axis and centered at the origin. We 
use a shear lag model developed by Cox [13] for a 
single fiber embedded in a matrix submitted to an 
uniaxial strain e at infinity applied along the same 
direction as the main axis of the fiber. In this model, 
it is assumed that 

d--~ = n" (u  - w) (1) 

where p is the load on the fiber, H" is a constant, u 
is the longitudinal displacement in the fiber and w is 
the hypothetical displacement at the same point in the 
absence of the fiber. The axial stress in the fiber a(x)  
can then be expressed as 

tr(x) = E r. e l1  cosh(fl "x) .] 
cosh(fl • L/2) _] (2) 

and the interracial shear stress z(x)  is 

Er" d " e " fl 
z(x) = sinh(fl "x) (3) 

4. cosh(fl • L/2) 

where =F. 8.Go ],,2 
fl LEf' d 2. ln(v f 1/2 ) (4) 

and Ef is the fiber elastic modulus, x the distance 
from the origin, Gm the matrix shear modulus and vf 
the fiber volume fraction. Equations (2) and (3) are 
connected by 

da(x)  4 
= - ~ . ~ ( x ) .  (5) 

dx 

This analysis, which was later refined by Dow [15], 
was found to be experimentally correct by Schuster 
and Scala [16] as well as Tyson and Davies [17], 
except close to the ends of the fibers (about two 
diameters from the extremity) where the measured 
shear stress was higher than predicted by Cox [13] due 
to the stress concentration at the end faces disconti- 
nuity. Figure l(a) shows schematically the interfacial 
shear stress which is zero at the fiber center and 
maximum at its ends. Since the fiber longitudinal 
stress is built up from the shear stress transfer from 
the matrix, it is zero at fiber ends (assuming no load 
transfer from the end faces) and maximum at the fiber 
center. 

We assume that equation (1) is valid for the case 
where the matrix shrinks (or expands) around a fiber, 
neglecting the radial strains. The same equations used 
for the shear-lag model [equations (1)-(4)] can then 
be used if the external strain e is assimilated to the 
thermal mismatch strain 

e = A~" AT (6) 
with 

A~ = ~m - ~f (7) 
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Fig. 1. (a-c) Schematic diagrams for the interfacial shear stress ~ and the fiber longitudinal stress a as 
a function of the distance x from the center of the fiber. (a) Purely elastic interface, (b) plastic-elastic 

interface, (c) plastic-elastic-unstrained interface. 

x 

where 0~ m and Gtf are respectively the matrix and fiber 
coefficient of thermal expansion and AT is the tem- 
perature difference between the higher temperature 
(stress-free state) and the lower temperature (stressed 
state). The axial fiber stress and the interracial shear 
stress are found by inserting equation (6) into 
equations (2) and (3). 

As can be seen from equation (2), the fiber longi- 
tudinal stress increases as x decreases and is maxi- 
mum at the fiber center. Simple inspection of 
equation (2), however, shows that the maximum fiber 
stress (at x = 0) will never reach the value Ere for a 
fiber of finite length L. Thus, in the purely elastic case, 
an unstrained interface cannot occur under the pre- 
sent assumptions, except of course at the exact center 
of the fiber. 

The interracial shear stress is maximum at the fiber 
end (x = L/2)  and increases as L increases. At some 
critical fiber length Lp. the critical shear stress zc is 
reached at the end of the fiber where plastic flow and 
dislocation emission begin. Introducing equation (6) 
as well as the values 

+'r = "r+ ( 8 a )  

x = Lp/2 (8b) 

L = Lp (8C) 

in equation (3) gives an equation for Lp 

2 [ 4 . ,  ] 
Lp = ~  arctgh )~ . E f . d . A e  . A T  " (9) 

If the fiber is longer than Lp, the interface at the ends 
of the fiber is plastic. We now consider the case when 
this happens. 

2.2. Plastic--elastic regime 

In the unstrained state at a higher temperature, the 
fiber of length L 0 can be thought of as occupying a 
hole of same length in the matrix [Fig. 2(a)]. Upon 

cooling by a temperature interval of AT, the fiber 
length - - i f  it were outside the matrix--would become 
Lf while the hole in the matrix in absence of the fiber 
would have a length L m . Fitting the fiber in the hole 
will force both the fiber and the hole to adopt a 
length L, which is intermediate between Lf and L m 
[Fig. 2(b)l. 

It is assumed that slip is the only relaxation mech- 
anism in the temperature interval AT, and that the 
fiber axis is oriented along a slip direction. Plasticity 
originates from the fiber end because the shear stress 
is maximum there and because the fiber end comer 
acts as a stress concentrator. The end of the fiber then 
acts like a punch and creates a pair of prismatic 
dislocation loops with opposite Burgers vector parallel 
to the fiber axis. One of these is a prismatic interstitial 
loop which glides away from the fiber end into the 
matrix, repelled by the local stress field of the fiber and 
that of subsequently formed interstitial loops. The 
vacancy loop can be thought as gliding in the other 
direction along the interface away from the fiber end 
and relaxing the stressed interface. The glide length 
defines the plastic zone. In reality, it is more probable 
that the vacancy loops are delocalized along the whole 
length of the plastic zone, i.e. the atomic planes shift 
slightly due to the addition of an additional plane at 
the interface, leading to a reduction of the elastic stress 
at the fiber end. The plastic zone can be thought of as 
the interfacial length where this shift is appreciable. 
The fiber thus relaxes its interface and emits in the 
matrix along the x-axis a row of coaxial, circular, 
interstitial, prismatic dislocation loops of diameter d. 
Since each loop carries away a disk of matrix material 
of thickness equal to its Burgers vector b, the number 
of loops n punched at each end is, by conservation of 
volume 

L - L m 
n -- - -  (10) 

2.b 
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Fig. 2. (a, b) Schematic diagram of matrix, fiber and composite before (a) and after (b) the temperature 
change AT. 

Now, Hooke's law applied to the elastic fiber 
gives 

L t -- L 0 
L E~ 

where the average stress in the fiber is 

2 f f~2 #(L) = Z" ~(x) dx 

while the CTE equations yield 

L 0 - L m 
- -  = ctra" AT 

L= 

L o -- Lf 
- -  = af 'AT 

Lf 

assuming isotropic and temperature independent 
CTEs. Combining equations (7), (10), (11), (13) 
and (14) then gives 

(11) L 

2.b. ( l  + a~.AT) 

x A c t ' A T - ( 1  +af 'AT) .  . (15) 
(12) 

Thus, one only needs to evaluate the average 
stress #(L) defined in equation (12) to find through 
equation (15) the number of loops punched at the 

(13) end of the fiber. This necessitates a knowledge of 
the function a(x) or equivalently of x(x) [equation 
(5)1. 

(14) The fiber longitudinal stress is shown schematically 
in Fig. 3. The integral of this stress function can 
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Diagram for the longitudinal stress for a fiber of 
length L in the plastic-elastic regime. 

be decomposed in four parts [right-hand side of 
equation (16)] labelled 1 to 4 in Fig. 3 

2 f0 /: - ~rs) (L - #(L)  = L" G(x) dx + 2 .-------T-- Lp) 

(o*--~B) 
-~ ~ ' L p + o ,  (16) 

where or* is the fiber longitudinal stress at the point 
where the interfacial shear stress reaches its critical 
value z~, cr B is the backstress on the end face of the 
fiber by the punched loops and G(x) is the contri- 
bution by the elastic interface to the fiber longitudinal 
stress. In what follows, we determine these three 
variables. 

We first evalute the integral of G(x). The elastic 
stress profile G(x) is independent of the fiber total 
length in the elastic-plastic regime. In other words, 
the stress diagrams of fibers of different lengths 
in that regime will match when superimposed. 
Figure 4(a) shows the superimposed diagrams of the 
interstitial shear stress for three fibers of length Lp, L 
and L, such that Lp ~< L ~< L,, the length L u corre- 
sponding to the boundary between the elastic-plastic 
and the elastic-plastic-unstrained regimes. It follows 
from equation (5) that the fiber longitudinal stress 
diagrams can also be superimposed, with a shift of 
the coordinate system due to the integration variable. 
This is shown schematically in Fig. 4(b-d) for the 
same three fiber lengths as in Fig. 4(a) (the backstress 
a s increases with the length of the fiber and is derived 
in Appendix A). The first term of the right hand side 
of equation (16) is thus independent of the fiber 
length and can be calculated by integrating equation 
(2) with L = Lp. This yields after introduction of 
equations (6) and (9) 

2 
-~" G ( x ) d x  = Er 'A~ 'AT  "Lp 8"~¢ 

o L f la.d.L.  (17) 

We now determine o*, the stress induced in the 
fiber by the plastic interfacial region. Considering 
the fiber of length L > Lp, the interfacial shear 
stress and fiber stress gradient in the plastic interface 

region, i.e. for values of x between Lp/2 and L/2 are 
respectively [Fig. 4(c)] 

~(x) = ~c, (18) 

da(x) a* - a .  
d ~  = 2. L - L-----~' (19) 

Inserting equations (18) and (19) into equation (5) 
then gives an expression for a* 

a* 2.% 
= ---d-- (L - Lp) + aB. (20) 

Inserting equations (17) and (20) into (16) finally 
yields 

6(L ) = Ef. A~ . AT  .Lp 
L 

"CC --2) + ~--_-_-_~ (L2 - L2p - 8" fl +oB (21) 

where as is given in Appendix A, equation (A1). 
Inserting equations (21) and (A1) into equation 

(15) gives an equation for the total number of loops 
n as a function of geometrical and thermomechanical 

(G) 

%C 
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Fig. 4. (a-d) Superimposed diagrams for the interfacial 
shear stress (a) and the corresponding diagrams for the 
fiber longitudinal stress (b-d) for three different fiber lengths 

Lp, L,L.. 

AM 39/7~ 
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parameters, all assumed to be isotropic and tempera- 
ture independent 

(1 +ctfAT).2.L.zc~-ln, 
n = 1 -k (-1 ~ ~-~-T)'-?-d~'Ef ,] (22) 

where 

n ' :  
L 

2.b .(1 -t- ctmAT) 

x f~d__~f ( z c  1 +otfAT)(Lp+-~-L 2 ) 2  8 

+ A~t 'AT'[L - Lp'(l + ~trAT)] } (23) 

is the solution of equation (21) for aB = 0. For most 
systems of interest, aa is very small and thus n and n '  
are almost equal. 

2.3. Plastic--elastic-unstrained regime 
In the elastic-plastic regime, the maximum fiber 

stress in the central fiber region increases with in- 
creasing fiber length since the length of the plastic 
region increases too, loading the fiber linearly from 
the fiber ends [equations (5) and (18)]. Above a 
certain critical length Lu, the fiber will be strained by 
the matrix to such a degree that a region in the middle 
of the fiber forms, devoid of strain mismatch with the 
matrix. The interfacial displacement and shear stress 
are zero in that region, and the fiber strain has a value 
of A~t AT. 

Lu is the critical length of the fiber between the two 
regimes plastic-elastic and plastic-elastic-unstrained, 
corresponding to the fiber length where the maximum 
strain A~tAT is just reached at the center of the fiber. 
The interfacial shear stress and fiber stress are shown 
in Fig. 4(d). The fiber stress at the origin is maximum 
and has the value 

o'(0) = El. A~t. AT. (24) 

From Fig. 4(b) and 4(e), we find 

tr(0) = tr . . . .  + cr*~x (25) 

where tre,m ~ and tr~*~ are the stress contributions from 
the elastic and plastic interface regions respectively. 
Inserting equation (2) (with x = 0  and L =Lp), 
equation (20) (with L = L .  and aB=¢Bmax) and 
equation (24) into equation (25) yields 

E r" d" A~t. AT d'trBm~ (26) 
Lu = Lp + 2"~c'cosh(fl "Lp/2) 2"~ c 

where aB~u is the backstress on the fiber of length 
Lu. 

Inserting L = Lu as given by equation (26) into 
equations (22) or (23) gives the maximum number 
of punched loops. Any fiber of length larger than 
Lu will punch this maximum number of loops 
regardless of its length, since the unstrained length 

in its center part does not contribute to the strain 
mismatch. 

In summary, depending upon the length of the fiber 
and the values of the thermomechanical properties of 
the fiber and the matrix, three main global regimes 
can be distinguished for a given fiber: 

(a) Elastic regime: the whole interface is elastic; the 
interfacial shear stress is everywhere below the inter- 
facial critical shear stress and no dislocation loops are 
created. 

(b) Plastic-elastic regime: both ends of the fiber 
have a plastic interface while the interface away from 
the end is elastic. The plastic interface forms when the 
fiber tip creates pairs of prismatic loops of vacancy 
and interstitial character respectively. The interstitial 
loop is punched from the fiber end into the matrix 
and glides away from the fiber. It leaves behind a 
vacancy loops which glides in the opposite direction 
along the fiber interface to relieve the interfacial 
mismatch. 

(c) Plastic-elastic-unstrained regime: the interface 
at both ends of the fiber is stressed plastically and 
then elastically; the load transfer is such that the 
central part of the fiber is elastically strained to the 
point that there is no local mismatch with the matrix, 
leading to an unstrained interface. 

Figure l(a-c) schematically show the interfacial 
shear stress and fiber axial stress for the three cases 
cited above; only half of the fiber is represented since 
these functions are symmetric with respect to the 
origin. We note that an elastic zone always exists 
because the interfacial displacement and thus the 
shear stress are zero at the fiber center. 

2.4. Punching distance 
The number of loops punched by a fiber was 

derived in the previous paragraph. From this infor- 
mation, it is possible to determine the length of plastic 
zone formed by the row of punched loops by equili- 
brating the system of loops in the matrix. Since all 
loops of identical Burgers vector repel each other, 
each loop is subjected to a stress pushing it away from 
the fiber by its neighbors closer to the fibers, and 
toward the fiber by its neighbors farther away from 
it. Each loop (except the one closest to the fiber) will 
move away from the fiber on its glide cylinder until 
it is subjected to a shear stress in the positive x 
direction equal to the lattice friction stress. This is 
true for the loop closest to the fiber as well if the 
residual elastic stress of the fiber is sufficient to 
counteract the stress of all the other loops. Alterna- 
tively, if the contribution of the other loops is large 
enough, this first loop will be pushed against the 
interface and prevented from moving farther. In 
either case, the loop closest to the fiber can be 
thought of as blocked, while all other loops are free 
to glide in the positive x direction, but prevented from 
moving an infinite distance by the lattice friction 
stress ~f. 
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In a recent paper [18], we computed the row length 
for different values of the total number of loops n and 
of the dimensionless parameter v 

2 . n . d . ( 1  - v).zf 
v = (27) 

b . G  

where G and v are the matrix shear modulus and 
Poisson's ratio and b is the loop Burgers vector. We 
took into account all neighbors excerting a stress 
larger than the friction stress and found that, for 
25 ~< n ~< 400 and 0.05 ~< v ~< 5, the row length L r can 
be fitted to 

Lr = 1.74"d'v-°64"n °'34. (28) 

Equations (22) and (23) can be inserted into 
equation (28) to yield the row length, calculated from 
the first loop. The length of the plastic zone is found 
by adding the distance between the loop closest to the 
fiber and the fiber end. As shown in the next para- 
graph, this length is small and is therefore neglected 
in the calculation of the punching distance which is 
taken as Lr. The average dislocation density p in the 
volume defined by the glide cylinder and the first and 
last loop is then 

4.n 
p = - -  (29) 

d.  t r 

or, introducing equation (28) into equation (29) 

2.30.v0.64.n0.66 
p d2 (30) 

Due to the unequal spacing of the loops, this 
density is not constant in the glide cylinder, being 
higher than average close to the fiber and lower at the 
other end of the row. 

2.5. Effect o f  fiber residual stresses on punching 
distance 

In what follows, we estimate the shear stress in the 
vicinity of a fiber with residual stresses and its effect 
on the punching distance. Even after punching, the 
fiber and the interface are stressed elastically as 
shown in the previous paragraphs, thus inducing a 
shear stress on the glide cylinder which can alter the 
equilibrium position of the row of loops and there- 
fore the row length [equation (28)]. We showed in a 
recent article [18] that large perturbations in the stress 
state at the row end closest to the blocked loop do 
not significantly change the row length. On the other 
hand, perturbations at the "free" end of the row have 
much larger effects on the local loop spacings and 
thus the row length. 

We do not seek to evaluate the stress close to the 
sharp corner formed by the end of the cylinder. It 
is likely to be high in the immediate vicinity of the 
singularity and to decay rapidly away from it. For  
instance, Schneider and Conway [19] found that, 
at a distance of 0.14 diameter from the end of a 

flat-end rectangular fiber, the shear stress was only a 
third of the uniform tensile stress applied at infinity. 
Similarly, Atkinson et al. [20] found that the shear 
stress decays very rapidly in the matrix close to the 
end of a partially embedded fiber subjected to a 
pull-out test. Except in the small region close to the 
stress singularity, the matrix stress is dominated by 
the contribution of the residual fiber stress; this 
matrix shear stress is calculated in what follows on 
the glide cylinder where the loops are located. 

Let us represent the fiber by a semi-infinite cylinder 
of diameter d, the end of which is at the origin of a 
cylindrical coordinate system z, r, 0. It is assumed 
that the interracial shear stress along the fiber is 
constant and equal to its maximal value zc, corre- 
sponding to a fully plastic interface. These two 
assumptions, of semi-infinite fiber and fully plastic 
interface, will yield an upper bound for the matrix 
shear stress since actual fibers are finite in length and 
since the interfacial shear strength can only be con- 
stant up to the middle of the fiber where its sign is 
reversed. Following Phan-Thien [21], the fiber is 
considered as a slender body which can be approxi- 
mated by a suitable distribution of "Kelvinlets" or 
point forces. For  the conditions stated above, the 
relevant Kelvinlets are 

dF z = -rr  "d'zc'dz,  (31) 

dF  r = 0, (32) 

dF o = O. (33) 

Landau and Lifshitz [22] give the displacement field 
u at a point x due to a force F applied at the origin 
of a cartesian coordinate system Xl, x2, x3 as 

l 
dui(x) - 

16"Ir 'G'(1 - v )  

3-4v 
× (x~ + x~ + x3Z) 1/2 t$ij 

xi" xj ] 
+ (x~ + x~ + x~) 3/2 " dR (34) 

where diij is the Kronecker symbol, G the matrix 
shear modulus and v its Poisson's ratio. Introducing 
equations (31)-(33) into equation (34) and using 
cylindrical coordinates yields 

d 'zc r .z 
duz= 16.G.(1 - v) (r2+z2)  3/2dz' (35) 

d • ~c 
du, - 

16"G'(1 - v )  

X ~(r2.~2)3/2 dz. (36) 

The shear strain is given by 

1 fO duz O du, "~ 
dE,~ = ~ ~ - -~ r  +--~-z ) .  (37) 



1412 DUNAND and MORTENSEN: DISLOCATION EMISSION AT FIBERS---I 

The overall shear strain due to the distribution of 
Kelvinlets is then 

f0 ~,: = dE, z (38) 

or, introducing equations (35)-(37) into equation 
(38) and rearranging 

d'~¢ ~" z - s 
E,z-- 32"G"O--v) J_oo [r2"~g~-s)2] 5/2 

× [4v(z - s) 2 - 3(z - s) + (4v - 3)r2]ds. (39) 

Solving equation (39) and introducing the result 
into 

~,, = 2" G" E,, (40)  

yields the final result 

3 - 4v d 

Lz = 16(1 - v) zc x/zx/zx/zx/zx/zx/zx~ ~ r2 (41) 

Equation (41) is the exact solution for the problem 
stated above, thus giving an upper bound for the 
shear stress induced by a fiber with residual stresses 
after dislocation punching, at a distance far enough 
from the end of the fiber for the comer singularity to 
be neglected and for the fiber to be satisfactorily 
approximated by a line of point forces. For  a typical 
value of v = 0.3, the shear stress on the glide cylinder 
r = d/2 at a distance of one diameter away from the 
fiber end (z = d)  is equal to 0.072~¢, i.e. an order of 
magnitude less than the minimum stress necessary to 
move a dislocation in the lattice, if it is assumed that 
the critical interfacial shear stress z¢ is about equal to 
zf, the lattice friction stress. This leads to the con- 
clusion that, apart from the stress induced by the 
singularity at the end of the fiber, the shear stress 
on the glide cylinder is negligible. Even if it is fully 
loaded through the interface, the fiber will have very 
little effect upon the loops punched at its ends. These 
will therefore be very close to the end of the fiber. We 
conclude that the length of the loop row as given by 
equation (28) is an adequate measure of the punching 
distance. 

It is of interest to compare the above result to the 
similar situation of the backstress due to a sphere of 
radius rs located at the origin of a cartesian coordi- 
nate system. The matrix shear stress on the glide 
cylinder of diameter x/~ r due to a sphere subjected 
to an elastic hydrostatic strain e is given by Johnson 
and Lee [23] as 

¢ 
~(~)= 9 6 " x / ~ ' G ' # " ~  (2"~2 + 1) s/: (42) 

where ~ = z/r, and fl' is a constant containing the 
matrix Poisson's ratio as well as the matrix and 
inclusion bulk moduli. 

It is apparent that, as expected, the shear stress 
decays more rapidly than in  the  case of the cylinder. 
To allow a further quantitative comparison, we calcu- 

late the stress on the glide cylinder when the residual 
stress in the sphere is such that the interfacial critical 
shear stress is reached at the intersection of the glide 
cylinder and the sphere. If the backstress due to the 
other loops is neglected, this is the maximal residual 
stress possible in the sphere since any higher stress 
would nucleate a loop at the interface. Introducing 
z = ~f and ~ = 1/x/~ into equation (42) gives a value 
for the maximum strain which, after introduction 
into equation (42), yields an equation for the shear 
stress on the glide cylinder 

z*(¢) = 8zf (2.~ 2 + 1)5/2. (43) 

Choosing again a distance of one diameter away 
from the interface (~ = 3) yields a value for ~* equal 
to 0.015"~ t. 

It can therefore be concluded that, in the case of 
the sphere as in the case of the cylinder, the backstress 
of the inclusion with a residual strain present after 
emission of loops is negligible at short distances away 
from the interface. This conclusion is supported by 
experimental observations of spherical and cylindri- 
cal inclusions [5] with the last punched loop located 
very close to the interface. 

3. DISCUSSION 

A parametric study was performed to investigate 
the influence of different variables on the number of 
punched loops n and the two critical length L u and 
Lp. The system aluminium/alumina was chosen as an 
example, the properties of which are given in Table 1. 
Each of the parameters in Table 1 was varied while 
keeping all the other constant. It was found that only 
AT, L, d, zc and Ef had a significant influence on n, 
L u or Lp. In particular, the volume fraction of fibers 
had a very small effect on these parameters. The 
length Lp as calculated from equation (9) was always 
small. 

Figure 5(a--e) shows the effect of these parameters 
on the number of punched loops, using equation (23). 
Also shown in the same figure are the values pre- 
dicted by the model of Ref. [10] which is briefly 
summarized in Appendix B. 

Table I. Thermal, mechanical and geometric 
parameters of the matrix and fibers used in 

the parametric study 
Parameter Aluminium Alumina 

E (GPa) 72.5 300" 
G (GPa) 30.1 -- 
v (--) 0.362 0.21 
~c, ~f (MPa) 5 
~t (10S/K) 23.5 9 a 
b (rim) 0.286 -- 
L (~m) - -  200 
d (#m) - -  3" 
vf (--) - -  O.l 
~s (MPa) - -  0 
AT fK) 2OO 
"Sa/~max TM values. 
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Fig. 5. (a) Number of  loops punched as a function of  the fiber diameter d, all other parameters in Table 
being constant. (b) Number of  loops punched as a function of  the fiber length L, all other parameters 
in Table 1 being constant. (c) Number of  loops punched as a function of  the fiber elastic modulus Ef, 
all other parameters in Table 1 being constant. (d) Number of  loops punched as a function of  the matrix 
critical interracial stress xc, all other parameters in Table 1 being constant. (e) Number of  loops punched 
as a function of  the temperature excursion AT, all other parameters in Table l being constant. Full curves: 

this model [equation 05)]. Dotted curves: model o f  Ref. [10] [equations (B1) and (B3)]. 
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Equations (9) and (26) giving the two critical 
lengths Lp and L u (wing a a = 0, see Appendix A) can 
be rewritten in dimensionless form 

2 --arctgh ~ , (44) 

f l ' L ,  ( ' A T ) +  / { A T ~ 2 -  1 (45, 2 -arctgh ~ / \  0 / 

where the intrinsic temperature 0 is given by 

4"~c _ ~ /21n(vi -1/2) 
0 = E f . f l . d . A c t - ~ /  ~ " (46) 

Figure 6 shows a dimensionless plot of the critical 
lengths Lp and Lu as a function of the temperature 
interval AT, for all other parameters being constant 
[equations (44) and (45)]. The two curves delimit 
the three regions, elastic, elastic-plastic and elastic- 
plastic-unstrained. Similar projections can be done 
for the other variables defining Lp and L,, introduc- 
ing the appropriate intrinsic variables corresponding 
to 0. 

It is apparent from Fig. 6 that, for A T >  0, a 
short fiber interface is completely elastic, a longer 
fiber interface is elastic-plastic while an even 
longer fiber interface is elastic-plastic-unstrained. 
For AT < 0 however, all fibers will have an entirely 
elastic interface. With the parameters chosen for the 
parametric study (Table 1), 0 is equal to 7.8 K. It is 
also clear from Fig. 6 that there is a critical fiber 
length L* (corresponding to the minimum of the 
L ~ - A T  curve), below which no temperature interval, 
however large, will produce an unstrained interfacial 
region 

1 2 = arctgh + 

= 1.847. (47) 
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AT/ 0 
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3 

Fig. 6. D i m e n s i o n l e s s  p lo t  of the two critical lengths Lp a nd  
L. as a function of the temperature excursion AT. 

For the parameters in Table 1, L* is equal to 
19/zm. 

The results above also show that the critical 
length Lp is small: for the parameters of Table 1, 
it is equal to 0.4#m. In typical fiber reinforced 
metals subjected to large temperature variations, 
the prevailing regimes will thus be elastic-plastic 
or elastic-plastic-unstrained, i.e. relaxation by slip 
along part of the fiber will be observed. It follows 
that the first term in equation (26) can be neglected 
and since the third term is negligible (because aB 
is typically smaller than %), equation (26) reduces 
to:  

Ef 'd 'A~  "AT 
L. ~ (48) 

2 ' "C c 

The boundary between the elastic-plastic regime 
and the elastic-plastic-unstrained regime is marked 
by an arrow in Fig. 5(a-e). For small values of L, zc 
and AT, and large values of Ef and d, the value of n 
calculated from equation (23) tends toward that 
predicted by equation (B3) which represents an upper 
bound value; as expected, this value is never ex- 
ceeded. An important qualitative and quantitative 
discrepancy is observed between our model and that 
of Ref. [10], since equation (23) does not predict a set 
of critical parameters for which punching is sup- 
pressed (except when the interface is completely 
elastic for L = Lp, at which point punching has not 
yet been activated). 

A possible reason why punching suppression is 
predicted by the model of Ref. [10] is its implicit 
assumption that the loops are punched all at once 
rather than one after the other. As the number of 
loops to be simultaneously punched increases, so does 
the total energy needed for punching. This energy 
may therefore exceed that released during the relax- 
ation of the spheroid, which would suppress punch- 
ing. A second possible reason is that, with the 
geometry assumed in Ref. [10], dislocations are emit- 
ted along the side of the fiber, and therefore must 
travel a distance proportional to the fiber length if Lr, 
defined as the distance between the leading loop of 
the row and the fiber tip, remains constant. This 
renders the energy dissipated by motion of the dislo- 
cation loops proportional to L when L, and d remain 
constant [see equation (15) of Ref. [10], reproduced 
here in Appendix B as equation (B2)]. In the analysis 
presented here, loops are punched sequentially rather 
than simultaneously, and are all emitted at the fiber 
end. We therefore reach the conclusion that no fiber 
is too long to punch loops. Rather, long fibers reach 
a critical length L,, above which subsequent punching 
is inhibited [Fig. 5(b)]. 

The assumption in Ref. [10] that all dislocation 
loops are emitted simultaneously is relaxed in a 
modified version of that model to be published 
elsewhere [26]. We find that loop punching is still 
suppressed for long fibers. This indicates that the 
second explanation proposed above, namely the 
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difference in inclusion geometry and dislocation emis- 
sion sites, is at the root  of  the discrepancy between 
model  in Refs [10, 26] and that presented here. For  
cylindrical fibers, we believe the present model  is 
more appropriate,  whereas that of  Refs [10, 26] is 
better for rounded inclusions which are more realisti- 
cally modelled as a spheroid. 

4. CONCLUSIONS 

The shear lag model  by Cox [13] can be adapted to 
predict thermal mismatch stresses between an elastic 
fiber and a matrix capable of  slip, including the case 
where part of  the fiber-matrix interface is plastic and 
prismatic loops are punched at the fiber end. The 
number of  loops reaches a maximum value when the 
fiber central port ion is strained by interfacial stresses 
to the point where it shows no mismatch with the 
matrix. 

The effect of  the fiber residual stress field on 
the loops is examined away from the corner singular- 
ity and found to be small, thus allowing to use 
existing expressions [18] to determine the punching 
distance (and thus the dislocation density on the 
glide cylinder) from the total number of  punched 
loops. 

A parametric study is performed on the system 
aluminium-alumina and the results for the total 
number of  loops punched are compared to those 
predicted by the model of  Ref. [10]. A discrepancy 
between the two models is found which is due to 
the different geometric and physical assumptions 
used. 

An additional proof  is given for the backstress 
exerted by a row of  loops at equilibrium on its 
source. The backstress is small even for a large 
number of  loops and is thus neglected for the para- 
metric study. 
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APPENDIX A 

Loop Backstress on the Fiber 

Using a virtual work argument, we derived in a previous 
publication [18] the backstress a B on an inclusion by a row 
of n loops in a crystal with friction stress rr 

4n~fb 
a B - (A1) 

d 

In what follows, we present an alternate proof for this result. 
Consider a hypothetical crystal with zero friction stress 
containing the same inclusion which has punched the same 
row of n coaxial, circular, prismatic loops of length I and 
Burgers vector b. If the loops were free to move, they would 
repel each other and glide an infinite distance away from the 
inclusion, since there would be no friction stress to stop 
them. Imagine now that the hypothetical crystal is subjected 
to an external shear stress ~ which prevent the loops from 
escaping to infinity. If the loops are assimilated to straight 
edge dislocations of the same length, the force F on the 
inclusion by the pile-up is [24] 

F = n~bl. (A2) 

If the value of this external shear stress is chosen as that of 
the friction stress of the real lattice zf, the spacing of the 
loops and therefore the backforce F a on the inclusion is the 
same in both cases 

F a = nzfbl. (A3) 

The real crystal with a friction stress zf has thus been 
replaced by an hypothetical crystal with zero friction stress 
but an external shear stress ~f. Since the spacings of the loop 
are the only parameters determining the magnitude of the 
backforce, it is identical in both situations. Assuming that 
the loops of length l =nd  exert a force Fa = %nd2/4 at the 
end of the fiber of same diameter, the results given in 
equation (AI) is found by introducing the two values above 
in equation (A3). 

Equation (A1) can then be introduced in equation (26) as 
well as equation (21), leading to equation (22). It appears 
from inspection that, even for large values of n, the terms 
containing a n are small compared to the other terms in these 
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equations. The backstress of  the loops on the fiber has thus 
a minor  effect on the stress-state of  the fiber and the 
interface. 

In equation (16), the backstress is added as a constant  to 
the longitudinal stress of  the fiber; this in an approximation 
since the backstress is not  due to a localized force at the 
end of  the fiber but  rather to the stress field o f  the row of  
loops that  is applied along the whole length of  the fiber. 
Since this field decays rapidly with distance and since the 
backstress is o f  small magnitiude, this approximation is 
inconsequential. 

A P P E N D I X  B 

Summary of  Taya and Mori's Model [10] 

This model predicts the number  of  loops and the punching 
distance Lr for a misfitting fiber which is assimilated to a 
prolate spheroid of  major  axis L and minor  axis d. Due to 
thermal mismatch,  the fiber punches loops, thus forming a 
plastic zone modelled as another  prolate spheroid of  same 
minor  axis as the fiber and major  axis L + 2L r. The 
punching distance is determined by solving 

d(U + W) 
- -  = 0 (B1)  

dLr 

where W is the work done by the mot ion of  the dislocation 
loops against the lattice friction stress Tf [25] 

~z 
W = ~ LrLdAozAT~ f. (B2) 

At, is the CTE difference between fiber and matrix and AT 
is the temperature excursion of  the composite. The potential 
energy U is calculated using Eshelby's equivalent inclusion 
method [12] and is of  the form U(L, L r, d, Aot, AT, Gin, Gf, 
~ ,  ,if, Vm), where G, 2 and v are shear modulus,  Lain6 
constant  and Poisson's  ratio, and the subscripts f and m 
denote fiber and matrix respectively. 

A noteworthy feature of  this model is that  each par- 
ameter in equation (B1) has a critical value for which 
the punching distance becomes zero, separating a regime 
of  positive and negative punching distances. The model 
o f  Ref. [I0] predicts that punching is suppressed in the 
latter regime and this result is justified by showing that 
the energy needed to move the dislocations against the 
lattice friction stress is larger than the elastic energy 
released by relaxation. This leads to the unexpected result 
that the punching length decreases and finally becomes 
zero as the fiber length (and thus the total mismatch) 
increases. In the regime where loops are emitted, they 
assume that nm,x loops are emitted at each end, correspond- 
ing to the total relaxation of  the longitudinal mismatch 
strain 

A~ATL 
nmx = 2b (B3) 

Figure 5(a--e) shows this value as dotted lines which 
drop to zero at a critical value corresponding to the 
onset of  negative punching distance regime predicted by 
numerically solving equation (B1) for L r = 0 .  We relax 
this last assumption in a forthcoming publication [2@ 
and reach the conclusion that beyond a certain fiber 
length, punching suppression is nonetheless predicted, in 
contradiction with the model presented in the body of  this 
article. 

A P P E N D I X  C 

Nomenclature 

b = Burger 's vector 
d = fiber diameter 
e = uniaxial strain 

E = elastic modulus  
F = force 

F B = backforce 
G = shear modulus  
H = function 

H"= constant  used in equation (I) 
l = dislocation length 

L = fiber length at low temperature inside the matrix 
L f =  fiber length at low temperature outside the 

matrix 
L= = matrix hole length at low temperature without 

fiber 
L o = fiber length at high temperature 
Lp = fiber critical length (elastic-plastic interface) 
L r = loop row length 
Lu = fiber critical length (elastic-plastic-unstrained 

interface) 
L * =  fiber length below which the fiber is never un- 

strained 
n = loop number  (approximate solution) 

n '  = loop number  (exact solution) 
p = fiber load 
rs = sphere radius 
u = displacement 
v = parameter defined in equation (27) 
Vr = fiber volume fraction 
w = displacement 
x = coordinate 
z = coordinate 

Subscripts 
f = fiber 

m = matrix 
r, z, 0 = coordinate 

i =  1 ,2 ,3  
max = maximal 

Greek symbols 
= coefficient of  thermal expansion 

fl = parameter defined in equation (4) 
f l ' =  parameter used in equation (42) 
fie = Kronecker symbol 

Act = CTE difference between matrix and fiber 
AT = temperature difference 

E = shear strain 
0 = critical value of  AT 
2 = Lame's  constant  
v = Poisson's ratio 
p = dislocation density 
tr = fiber longitudinal stress 
0 = average stress 

aB = backstress 
~re = elastic contribution to fiber stress 

a * =  fiber stress at Lp 
= interfacial shear stress 

z c = critical interfacial shear stress 
zf = lattice friction stress 
* =  shear stress on glide cylinder 

= dimensionless coordinate 
= dimensionless coordinate 


